0%

SGU 106 The equation (扩展GCD_多特判)

题目链接:
http://acm.hust.edu.cn/vjudge/contest/70017#problem/X

题目大意:
给出一个二元一次方程ax+by+c=0ax + by + c = 0,并给出两个范围[x1,x2][y1,y2][x1,x2]、[y1,y2],求x,yx,y均在范围内的解的个数

分析:
1.a=0,b=0,c=0a=0,b=0,c=0时,所有解均成立,共(y2y1)(x2x1)(y2-y1)*(x2-x1)个解
2.a=0,b=0,c0a=0,b=0,c\neq0时,无解
3.a0,b=0a\neq0,b=0时,如果c不是a的倍数或c/ac/a不在范围内,显然无解,反之[x1,x2][x1,x2]所有数均可
4.a=0,b0a=0,b\neq0时同理
先将方程转化为 ax+by=cax + by = -c 扩展欧几里得解方程的标准形式
即c取反,如果c此时为负,则需对整个式子取反
如果此时a或b为负,需要对x或y的取值范围反转,变为[x2,x1][y2,y1][-x2,-x1]或[-y2,-y1]
将方程系数a,b代入exgcd(我用的是一个5参数的exgcd模板,中间的参数最后得到gcd(a,b)gcd(a,b)
然后比较c是否被gcd(a,b)整除,若不能,方程无解,若能x0=xc,y0=ycx0=x*c,y0=y*c
通解为$ x = x0 + kb y = y0 - ka 那么 那么x1x0+kbx2x1\leq x0 + kb \leq x2$

y2kay0y1-y2 \leq ka - y0 \leq-y1

解得$$\frac{x1}{b} - x0 \leq k \leq \frac{x2}{b} - x0$$

y0y2aky0y1ay0 - \frac{y2}{a} \leq k \leq y0 - \frac{y1}{a}

最后取并集即可 , 但是要注意如3.5k7.53.5 \leq k \leq 7.5 显然 左边需要向上取整
右边需要向下取整 使用floor 和ceil函数即可完成

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<map>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;


void exgcd(ll a , ll b , ll &c , ll &x , ll &y)
{
if (!b){x=1;y=0;c=a;}
else{exgcd(b,a%b,c,y,x);y-=a/b*x;}
}

int main()
{
ll a,b,c,x1,x2,y1,y2,t,x,y,d;
while (~scanf("%I64d%I64d%I64d",&a,&b,&c))
{
ll ans = 0;
scanf("%I64d%I64d",&x1,&x2);
scanf("%I64d%I64d",&y1,&y2);
c = -c;
if (c<0)
{
a = - a ;
b = - b ;
c = - c ;
}
if (a<0)
{
a = - a;
t = - x1;
x1 = - x2;
x2 = t;
}
if (b<0)
{
b= - b;
t = - y1;
y1 = -y2;
y2 = t;
}
if (a==0&&b==0&&c!=0)
ans = 0;
else if (a==0&&b==0&&c==0)
ans = (x2-x1+1)*(y2-y1+1);
else if (a==0)
{
if (c%b||c/b<y1||c/b>y2)
ans = 0;
else
ans = x2 - x1 + 1;
}
else if (b==0)
{
if (c%a||c/a<x1||c/a>x2)
ans = 0;
else
ans = y2 - y1 + 1;
}
else
{
exgcd(a,b,d,x,y);
//cout<<"now d = "<<d<<endl;
//cout<<"x = "<<x<<" y = "<<y<<endl;
if (c%d)
ans = 0;
else
{
//cout<<"a b c = "<<a<<" "<<b<<" "<<c<<endl;
a /= d;
b /= d;
c /= d;
x *= c;
y *= c;

ll l,r,lx,ly,rx,ry;
lx = ceil((x1 *1.0- x)/b);
ly = ceil((y- y2 *1.0)/a);
l = max(lx,ly);
rx = floor((x2 *1.0- x)/b);
ry = floor((y - y1 *1.0)/a);
r = min(rx,ry);
if (r<l)
ans = 0;
else
ans = r - l + 1;
}
}
printf("%lld\n",ans);

}
}