0%

HDU 4965 Fast Matrix Calculation (矩阵快速幂

题目链接:
https://vjudge.net/contest/71746#problem/E

题目大意:
现有一个nk的矩阵A,以及一个kn的矩阵B,在模6域下,求得矩阵C = A*B,并对CnnC^{n*n}的每一个元素求和,输出结果

分析:
直接暴力对C矩阵做快速幂,用类会爆空间,会数组写比较繁琐,且可能超时,所以可以得到以下式子

Cnn=(AB)nn=A(BA)(BA)(BA)BC^{n*n} = (A*B)^{n*n}=A*(B*A)*(B*A)\cdots*(B*A)*B

即可写作

Cnn=A(BA)nn1BC^{n*n} = A*(B*A)^{n*n-1}*B

BAB*A是一个6*6的矩阵,对它求快速幂便很容易了

代码:
(因为调了好多遍,写的很丑,调试输出也很多,只要#define ONLINE即可不调试输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cstdlib>
//#define ONLINE
using namespace std;
const int N = 1200;
struct mart
{
int n,m;
int a[12][12];
};

int n,m,x,y,q;
mart now;



int a[N][10],b[10][N],c[10][N],d[N][N];
typedef long long ll;
const int mod = 1000000007;



mart unit;


mart multiply(mart A,mart B)
{
mart C;
C.n = A.n;
C.m = B.m;
#ifndef ONLINE
cout<<"A.n = "<<A.n<<" B.m = "<<B.m<<endl;
#endif
for (int i = 1 ; i <= m ; i ++)
{
for (int j = 1 ; j <= m ; j ++ )
{
C.a[i][j] = 0;
for (int k = 1 ; k <= m ; k ++)
{
C.a[i][j] += A.a[i][k]*B.a[k][j];
C.a[i][j] %= 6;
}
}
}
return C;
}

mart quickpow(mart p,int t)
{
mart ans = unit;

while (t)
{
if (t&1)
ans = multiply(ans,p);
p = multiply(p,p);
t >>= 1;
}
#ifndef ONLINE
for (int i = 1 ; i <= m ; i ++)
{
for (int j = 1 ; j<= m ; j ++)
cout<< ans.a[i][j]<<'\t';
cout<<endl;
}
cout<<">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<endl;
#endif // ONLINE
return ans;

}


void init()
{
memset(now.a,0,sizeof(now.a));
memset(c,0,sizeof(c));
memset(d,0,sizeof(d));
memset(unit.a,0,sizeof(unit.a));
unit.m=m;
unit.n=m;
now.n = m;
now.m = m;
for (int i = 0 ; i < 12 ; i ++)
unit.a[i][i] = 1; //单位矩阵
return;
}


void read() //读入
{
for (int i = 1 ; i <= n ; i ++)
for (int j = 1; j <= m ; j ++)
scanf("%d",&a[i][j]);
for (int i = 1 ; i <= m ; i ++)
for (int j = 1; j <= n ; j ++)
scanf("%d",&b[i][j]);
return;
}

int main()
{
init();
while (~scanf("%d%d",&n,&m)&&(n||m)){
if (n==0&&m==0)
return 0;
init();
read();


for (int i = 1 ; i <= m ; i ++)
{
for (int j = 1 ; j <= m ; j ++)
{
now.a[i][j] = 0;
for (int k = 1 ; k <= n ; k ++)
{
now.a[i][j] += b[i][k] * a[k][j];
now.a[i][j] %= 6;
}
}
}

#ifndef ONLINE
cout<<"---------------------------------------------------"<<endl;
for (int i = 1 ; i <= m ; i ++)
{
for (int j = 1 ; j<= m ; j ++)
cout<< now.a[i][j]<<'\t';
cout<<endl;
}
cout<<"---------------------------------------------------"<<endl;
#endif // ONLINE

mart Ans = quickpow(now,n*n-1);
for (int i = 1 ; i <= m ; i ++)
{
for (int j = 1 ; j <= n ; j ++)
{
for (int k = 1 ; k <= m ; k ++)
{
c[i][j] += Ans.a[i][k]*b[k][j];
c[i][j] %= 6;
}
}
}

for (int i = 1 ; i <= n ; i ++)
{
for (int j = 1 ; j <= n ; j ++)
{
for (int k = 1 ; k <= m ; k ++)
{
d[i][j] += a[i][k] * c[k][j];
d[i][j] %= 6;
}
}
}

int ans = 0;
for (int i = 1 ; i <= n ; i ++)
{
for (int j = 1 ; j <= n ; j ++)
{
#ifndef ONLINE
cout<< d[i][j]<<'\t';
#endif // ONLINE
ans += d[i][j];
}
#ifndef ONLINE
cout<<endl;
#endif // ONLINE
}
printf("%d\n",ans);
}

}